

Innovations in Inorganic and Materials Chemistry Living Safely (and Healthily) in

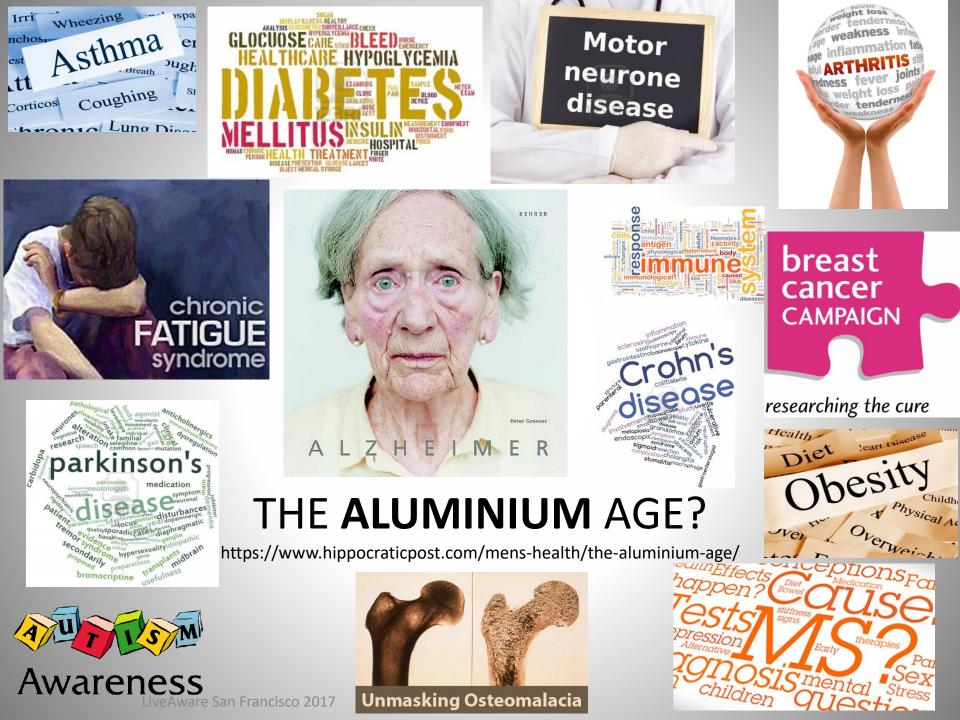
the Aluminium Age

Christopher Exley PhD FRSB

Professor of Bioinorganic Chemistry

Aluminium and Silicon Research Group

The Birchall Centre, Lennard-Jones Laboratories,


Keele University, Staffordshire, ST5 5BG, UK

c.exley@keele.ac.uk

http://www.keele.ac.uk/aluminium/

Honorary Professor, University of the Highlands and Islands, Scotland, UK LiveAware San Francisco 2017

What seems to be the problem here

AI MAN

Human Exposure to Aluminium

Why Silicon-Rich Mineral Waters (and not so-called silicon/silica supplements) Will Protect You!

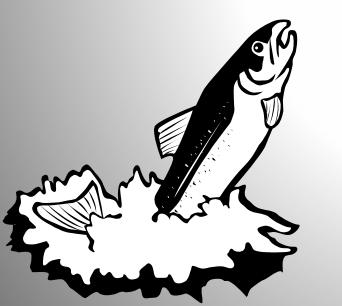
SILICON/SILICA SUPPLEMENTS

A Bioinorganic Solution to Aluminium-Related Disease?

1989

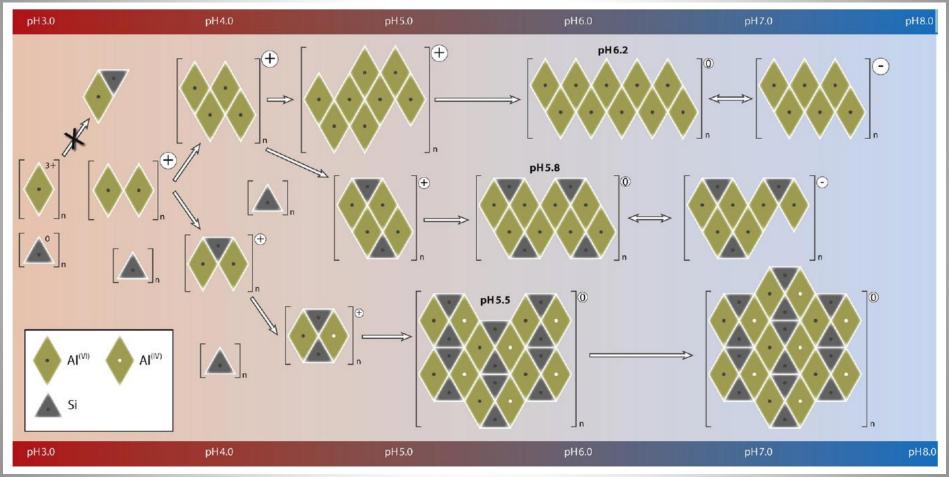
Acute toxicity of aluminium to fish eliminated in silicon-rich acid waters

J. D. BIRCHALL, C. EXLEY, J.S. CHAPPELL & M. J. PHILLIPS


Nature 338, 146 - 148 (09 March 1989); doi:10.1038/338146a0

2006

Non-invasive therapy to reduce the body burden of aluminium in Alzheimer's disease

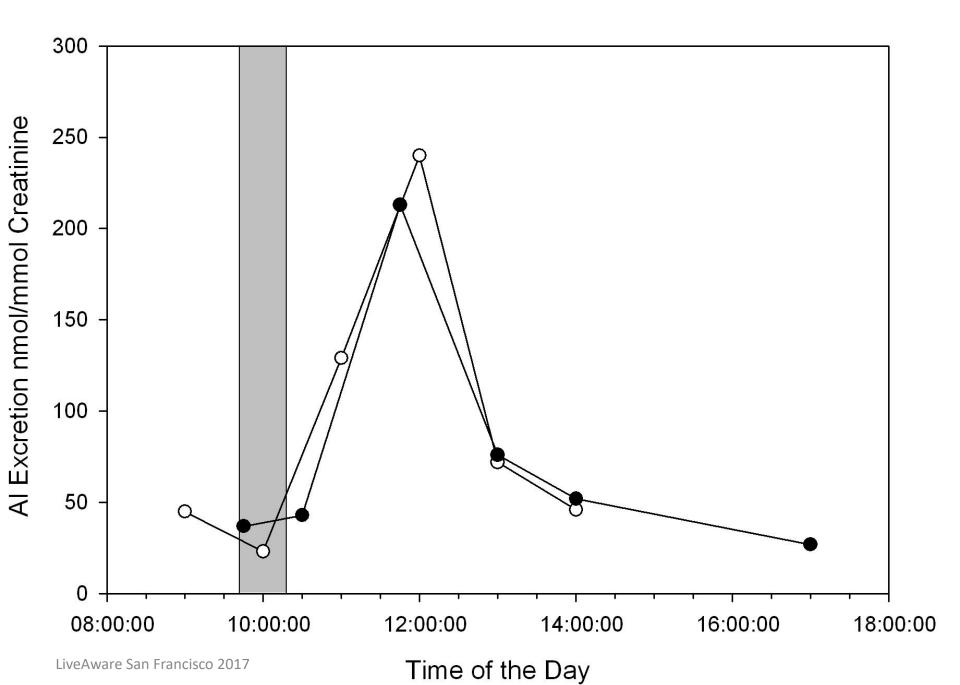

Christopher Exley, Olga Korchazhkina, Deborah Job, Stanislav Strekopytov, Anthony Polwart and Peter Crome

Journal of Alzheimer's Disease 10 (2006) 17–24

The Unique Inorganic Chemistry of the Reaction of Aluminium with Silicic acid

Coordination Chemistry Reviews 256 (2012) 82-88

Silicic acid reacts with aluminium to form HAS


SCIENTIFIC REPORTS

OPEN What is the mechanism of formation of hydroxyaluminosilicates?

Received: 26 May 2016 Accepted: 08 July 2016 Published: 01 Aug 2016 James Beardmore¹, Xabier Lopez², Jon I. Mujika² & Christopher Exley¹

The formation of hydroxyaluminosilicates is integral to the biogeochemical cycles of aluminium and silicon. The unique inorganic chemistry which underlies their formation explains the non-essentiality in biota of both of these elements. However, the first steps in the formation of hydroxyaluminosilicates were hitherto only theoretical and plausibly only accessible *in silico*. Herein we have used computational chemistry to identify and define for the first time these unique and ultimately critically important reaction steps. We have used density-functional theory combined with solvent continuum models to confirm first, the nature of the reactants, an aluminium hydroxide dimer and silicic acid, second, the reaction products, two distinct hydroxyaluminosilicates the role of which has been and continues to be to keep inimical aluminium out of biota.

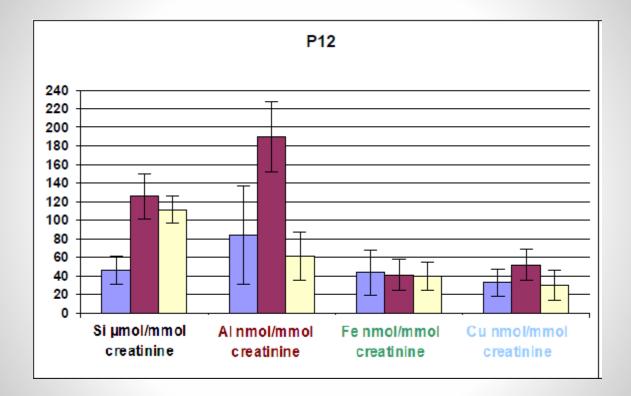
http://www.nature.com/articles/srep30913 LiveAware San Francisco 2017

Non-invasive therapy to reduce the body burden of aluminium in Alzheimer's disease

Christopher Exley^{a,*}, Olga Korchazhkina^b, Deborah Job^c, Stanislav Strekopytov^a, Anthony Polwart^d and Peter Crome^{c,e} ^aBirchall Centre for Inorganic Chemistry and Materials Science, Keele University, Staffordshire, UK ^bInstitute for Science and Technology in Medicine, Keele University, Staffordshire, UK ^cDepartment of Gerontology, University Hospital of North Staffordshire, Staffordshire, UK ^dLife Sciences, Keele University, Staffordshire, UK ^eSchool of Medicine, Keele University, Staffordshire, UK

The first 'test' (over only 5 days) of an 'aluminium hypothesis of Alzheimer's disease with a silicon-rich mineral water showed that silicon-rich mineral waters could be an effective and non-invasive method to lower the body burden of aluminium.

The Second Test!


Silicon-Rich Mineral Water as a Non-Invasive Test of the 'Aluminum Hypothesis' in Alzheimer's Disease

Samantha Davenward^a, Peter Bentham^b, Jan Wright^b, Peter Crome^c, Deborah Job^c, Anthony Polwart^d and Christopher Exley^{a,*}

^aThe Birchall Centre, Lennard-Jones Laboratories, Keele University, Stoke-on-Trent, Staffordshire, UK ^bBirmingham and Solihull Mental Health NHS Foundation Trust, The Barberry Centre, Birmingham, UK ^cNorth Staffordshire Combined Healthcare NHS Trust, Harplands Hospital, Stoke-on-Trent, UK ^dLife Sciences, Keele University, Stoke-on-Trent, Staffordshire, UK

We have provided preliminary evidence that over 12 weeks of silicon-rich mineral water therapy the body burden of aluminium fell significantly in individuals with Alzheimer's disease and, <u>concomitantly, cognitive</u> <u>performance showed clinically relevant improvements in at least 3 out of</u> <u>15 individuals.</u> LiveAware San Francisco 2017

Alzheimer's Disease

Healthy Volunteers

Table 3.1.4.1: Mean, SD and range of Si (µmoles/24h), Al, Fe and Cu (nmoles/24h) excreted

in a 24-hour urine sample for the control and treatment data sets (n = 23).

Urinary excretions in a 24-hour urine sample							
		Sili	icon	Aluminium			
	(µmoles/24h)			(nmoles/24h)			
	Mean	SD	Range	Mean	SD	Range	
Control	550	249	179 – 1216	1069	494	276 - 2356	
Treatment	947	428	303 - 1852	1808	843	402 - 3597	
	Iron			Copper			
	(nmoles/24h)			(nmoles/24h)			
	Mean	SD	Range	Mean	SD	Range	
Control	376	282	128 - 1123	216	107	85 - 519	
Treatment	332	122	135 - 804	207	89	83 - 407	

Healthy Volunteers

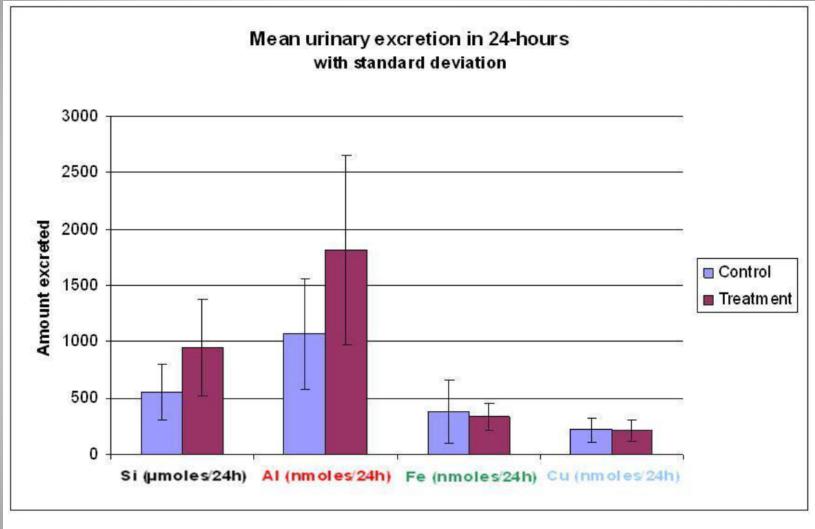
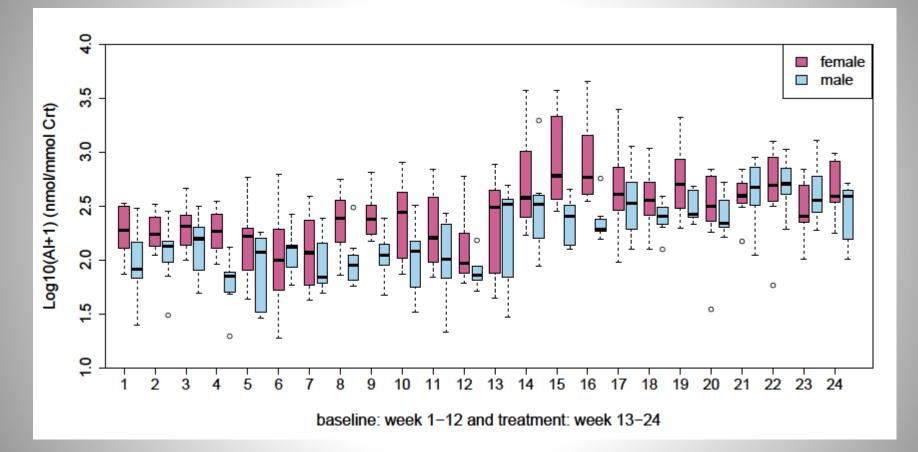
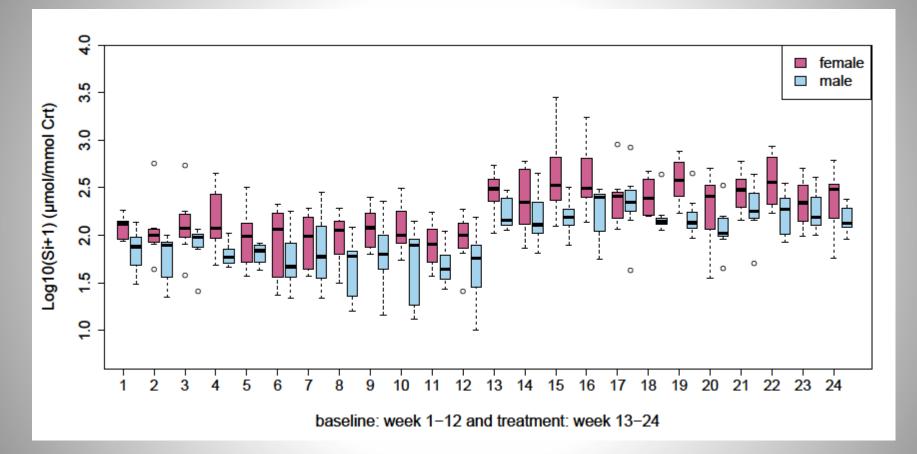


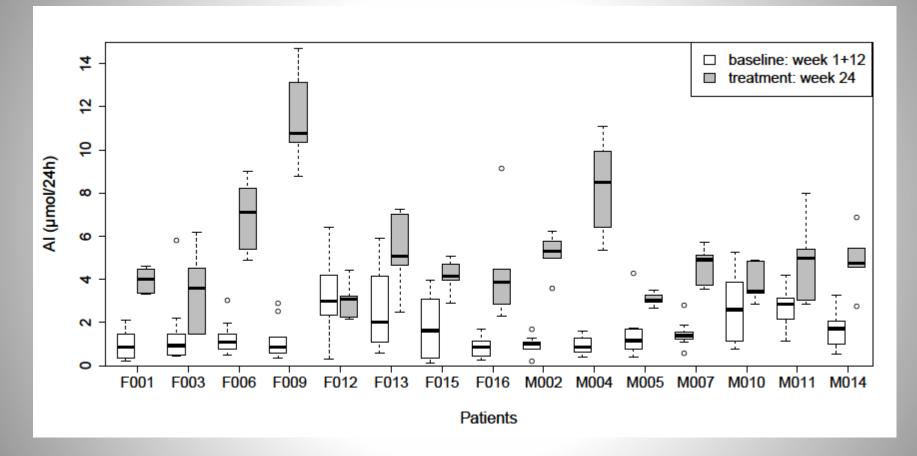
Figure 3.1.4.2: Mean amounts and standard deviation bars of excreted Si (µmoles/24h), Al,

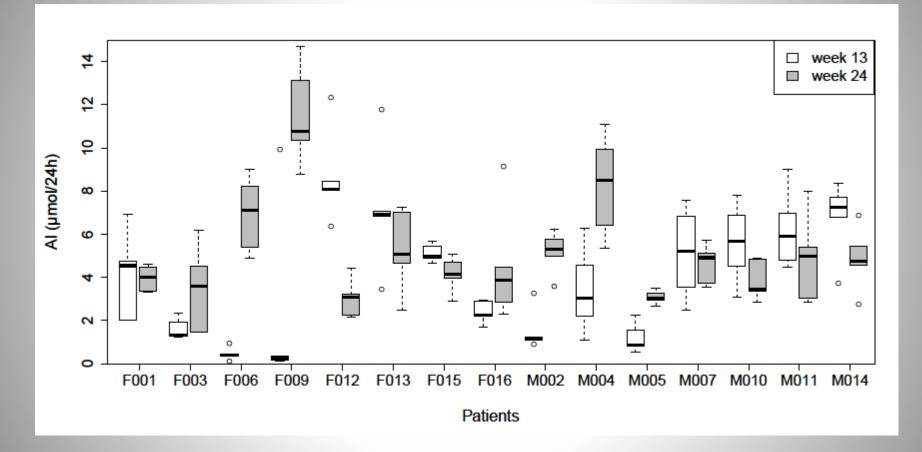
Fe and Cu (nmoles/24h) in the control and treatment samples.

ARTICLE


Elevated urinary excretion of aluminium and iron in multiple sclerosis


Christopher Exley¹, Godwin Mamutse², Olga Korchazhkina³, Eleanor Pye², Stanislav Strekopytov¹, Anthony Polwart⁴ and Clive Hawkins²


Levels of urinary aluminium excretion similar to those seen in aluminium intoxication suggested that aluminium may be a hitherto unrecognised environmental factor associated with the aetiology of MS. If aluminium is involved in MS then an increased dietary intake of its natural antagonist silicon, might be a therapeutic option.


Urinary excretion of aluminium and silicon in secondary progressive multiple sclerosis (SPMS)

Urinary excretion of aluminium and silicon, measured using transversely-heated graphite furnace atomic absorption spectrometry, was determined in 15 individuals diagnosed with SPMS over 24 weeks, a 12 week baseline period (control) followed by a 12 week treatment period, during which individuals consumed up to 1.5L of a silicon-rich mineral water every day.

Silicon-rich mineral waters may be an effective and non-invasive therapy for the removal of aluminium from the body of individuals with SPMS. Journal of Trace Elements in Medicine and Biology 28 (2014) 87-88

Contents lists available at ScienceDirect

Iournal of

Trace Elements

CrossMark

Journal of Trace Elements in Medicine and Biology

journal homepage: www.elsevier.de/jtemb

Short communication

Aluminium in human sweat

Clare Minshall^a, Jodie Nadal^a, Christopher Exley^{b,*}

^a Life Sciences, The Huxley Building, Keele University, Staffordshire, United Kingdom

^b The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, United Kingdom

Perspiration may be as important, if not more important, as a means of removal of aluminium from the body!

How might this be influenced by regular drinking of a silicon-rich mineral water?

Healthy Volunteers

Excretion of Si in sweat					
ID	[Si] Sweat control (µg/L)	[Si] Sweat treatment (µg/L)			
F1	812 (170)	1466 (172)			
F2	647 (8)	1609 (23)			
F3	601 (9)	1332 (72)			
F4	626 (27)	1683 (113)			
F5	576 (5)	1476 (22)			
F6	668 (37)	1612 (56)			
F7	616 (12)	1110 (17)			
F8	732 (87)	1634 (323)			
F9	787 (57)	1778 (18)			
F10	691 (9)	1938 (17)			
M1	944 (31)	1661 (18)			
M2	1050 (10)	2167 (28)			
M3	874 (22)	1281 (35)			
M4	743 (34)	1870 (80)			
M5	810 (25)	1348 (52)			
M6	783 (20)	2327 (73)			
M7	994 (15)	1941 (5)			
M8	578 (31)	1588 (28)			
M9	<mark>674 (17)</mark>	1726 (41)			
Mean (SD)	748 (140)	1660 (303)			

Healthy Volunteers

Excretion of Al in sweat						
ID	[AI] Sweat control (µg/L)	[AI] Sweat treatment (µg/L)				
F1	467 (96)	1184 (169)				
F2	217 (11)	381 (33)				
F3	270 (10)	1081 (55)				
F4	255 (17)	986 (20)				
F5	187 (9)	619 (13)				
F6	300 (16)	424 (42)				
F7	266 (57	427 (29)				
F8	520 (120)	1035 (131)				
F9	585 (8)	994 (51)				
F10	461 (9)	1215 (85)				
M1	444 (88)	772 (15)				
M2	71 (4)	1030 (42)				
M3	526 (6)	1589 (113)				
M4	574 (26)	1677 (28)				
M5	464 (12)	1666 (33)				
M6	183 (36)	1276 (87)				
M7	152 (57)	1536 (88)				
M8	400 (31)	690 (18)				
M9	255 <mark>(</mark> 34)	639 (25)				
Mean (SD)	347 (156)	1012 (419)				

I think I have the solution... Have a good day!

AI MAN

SPRINT