
Exploring the rationale for the high concentration of aluminium used in clinical vaccinations.

Introduction

How does the concentration of AI in vaccines impact the biology at the site of injection?

Maximum amount of AI permitted in vaccines [1]

- ➤ 0.85mg/dose if determined by assay
- ➤ 1.14mg/dose if determined by calculation on basis of Al compound added

Average amount of AI in vaccines

ca 0.4mg/dose (0.8mg/mL)

Rationale

- ➤ Higher concentrations of Al are more effective.
 - ❖>0.5mg/dose Al did not improve efficacy of tetanus vaccine [2].
 - ❖ High concentrations of AI may impede immunological response – cytotoxicity [3]

Methodological approach

Vaccine models

➤ Alhydrogel in saline (no antigen) – 0.3-0.9mg/mL Al (pH 7)

Physicochemical characterisation

- Particle size
- > Zeta potential
- ➤ Size exclusion filtration/GFAAS (Al quantification)

Uptake

- ➤ Fluorescence microscopy lumogallion staining (50µM)
- ➤ Macrophages exposed to Al for 1hr

Cell viability

Presto blue assay – determinant of metabolic activity (resazurin based assay)

DLS – Particle size distribution vs. concentration of Al in simulated vaccines.

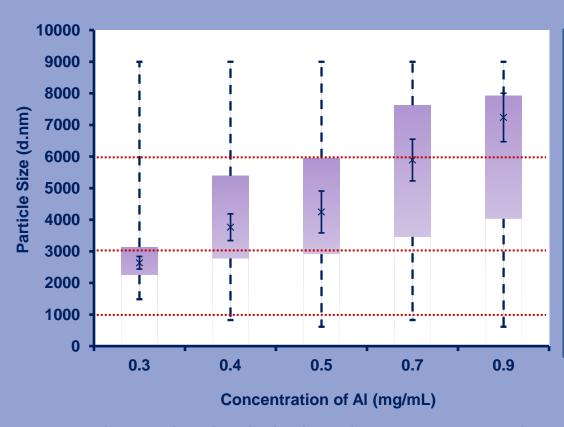


Fig 1: Particle size distributions of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al. Purple boxes indicate the interquartile range of the data while the dashed bars show the span. Blue crosses show the average d50 values and d50 error bars represent the ±SD of the measurement where n=5. The red dotted lines highlight the relevant filtration size cut-offs used in complementary experiments.

- Interquartile range encompassed larger particles as the concentration of Al was increased.
- The breadth of the interquartile range also increased when the concentration of AI was increased.
- Based on the theoretical filtration size cut-offs:
 - ❖ The majority of the AI in these vaccines will exist as micron-sized aggregates i.e. >1µm.
 - ❖ Significant shifts in size are expected between 0.3 & 0.4mg/mL and 0.5 & 0.7mg/mL.

DLS – PDI vs. concentration of AI in simulated vaccines.

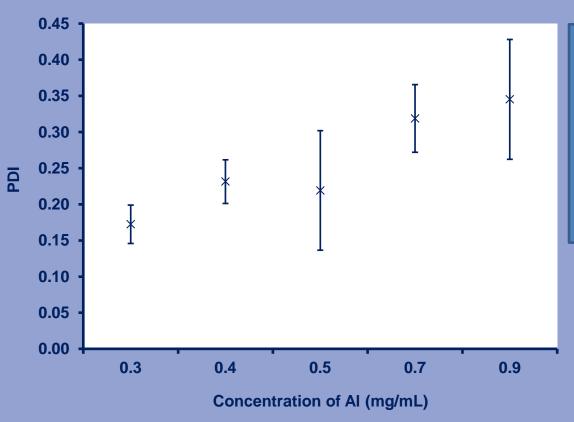


Fig 2: PDI of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al. Error bars represent the ±SD of the measurement where n=5

- PDI values predominantly increased over the concentration range studied (0.172-0.345).
- Significant difference in PDI observed between :
 - **❖** 0.3 & 0.9mg/mL (0.172 vs. 0.345, P=0.001).
 - ❖ 0.4 & 0.7 mg/mL AI (0.231 vs. 0.319, P=0.05).

DLS – Median particle size vs. concentration of Al in simulated vaccines.

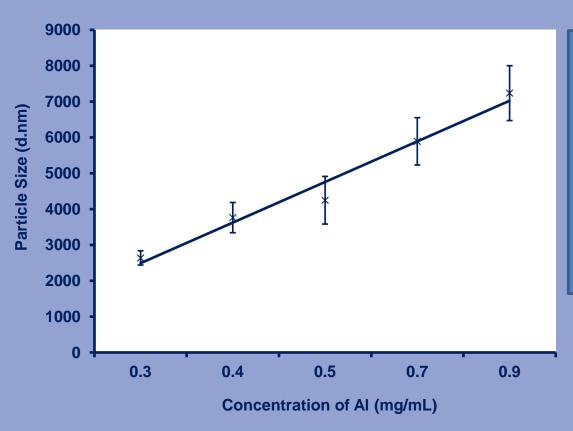


Fig 3: Particle size (d50) of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al. Error bars represent the ±SD of the measurement where n=5

- D50 values increased in a linear manner over the concentration range studied (2638 -7237 nm, R² = 0.974).
- Significant difference in median particle size between:
 - ❖ 0.3 & 0.9 mg/mL (2638 nm vs. 7237 nm, P<0.0001).</p>
 - ❖ 0.3 & 0.4 mg/mL (2638 nm vs. 3764 nm, P=0.03)
 - ❖ 0.5 & 0.7 mg/mL (4247 nm vs. 5890 nm, P=0.0007).

ELS – Zeta potential vs. concentration of Al in simulated vaccines.

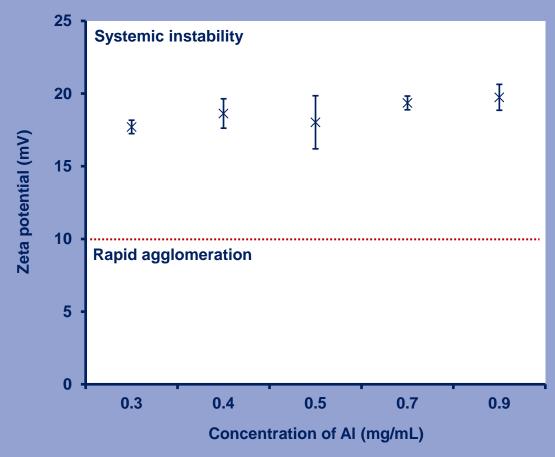
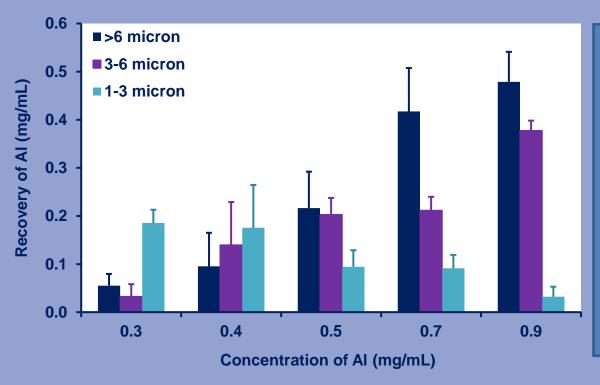



Fig 4: Zeta potential of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al. Error bars represent the ±SD of the measurement where n=5

- Zeta potential values remained fairly consistent over the concentration range studied and were located in the region associated with systemic instability (17.71-19.74mV).
- Lowest vaccine dose had a significantly lower zeta potential than that of the highest vaccine dose (17.71 vs. 19.74 mV, P=0.05).
- Vaccine particles are positively charged at pH 7

GFAAS/filtration – % aluminium recovery vs. concentration of AI in simulated vaccines.

Abundance of particles between 1-
3µm decreased when concentration
of Al increased.

Significant differences observed
between:

- 0.3mg/mL & 0.9mg/mL (0.19mg/mL vs. 0.03mg/mL, P=0.004)
- ❖ 0.4mg/mL & 0.9mg/mL
- (0.18mg/mL vs. 0.03mg/mL, P=0.01)
- ➤ Smaller particles present at 0.3mg/mL vs. 0.9mg/mL lower concentrations are more likely to be internalised by macrophages

Concentration of AI (mg/mL)	0.3	0.4	0.5	0.7	0.9
	Recovery of AI (%)				
1-3µm	77.06	55.04	10.89	3.45	0.68
3-6µm	2.71	17.30	47.02	33.64	30.09
>6µm	20.19	27.62	42.08	62.90	69.20

Fig 5: The relative abundance of aluminium (%) within specific particle size fractions for Alhydrogel only vaccines containing an initial concentration of 0.3-0.9mg/mL Al. Blue, purple and green boxes represent the % Al in the size fractions >6μm, 3-6μm & 1-3μm respectively.

DLS – Particle size distribution of simulated vaccines in R10 medium (1hr incubation)

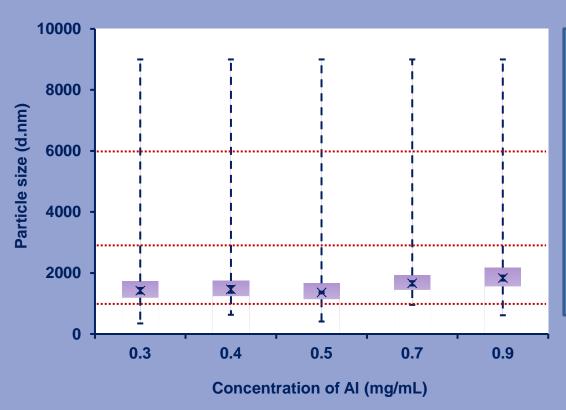


Fig 6: Particle size distributions of Alhydrogel only vaccines 0.3-0.9mg/mL Al following 1hr incubation within R10 medium (37°C). Purple boxes indicate the interquartile range of the data while the dashed bars show the span. Blue crosses show the average d50 values and d50 error bars represent the ±SD of the measurement where n=5. The red dotted lines highlight the relevant filtration size cut-offs used in complementary experiments.

- Interquartile range of the data remained consistent as the concentration of Al was increased.
- The breadth of the interquartile range also remained stable as the concentration of AI was increased.
- Based on the theoretical filtration size cut-offs:
 - ❖ The majority of the Al will exist as micron-sized aggregates i.e. >1µm.
 - Significant shifts in size between concentrations are unlikely.

DLS – PDI of simulated vaccines in R10 medium (1hr incubation)

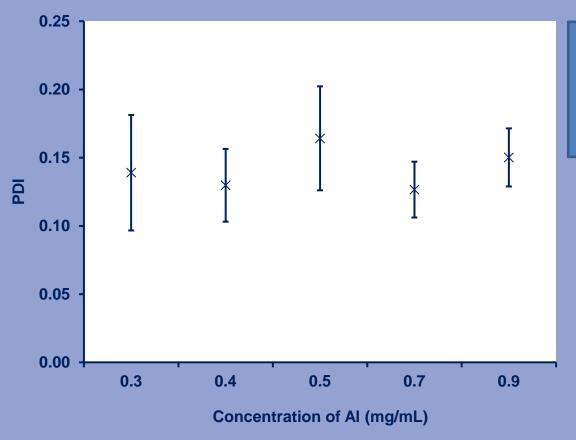


Fig 7: PDI of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al following 1hr incubation within R10 medium (37°C). Error bars represent the ±SD of the measurement where n=5

- PDI values remained stable over the concentration range studied (0.127-0.164).
- No significant difference in PDI between any of the concentrations studied.

DLS – Median particle size vs. concentration of Al in simulated vaccines.

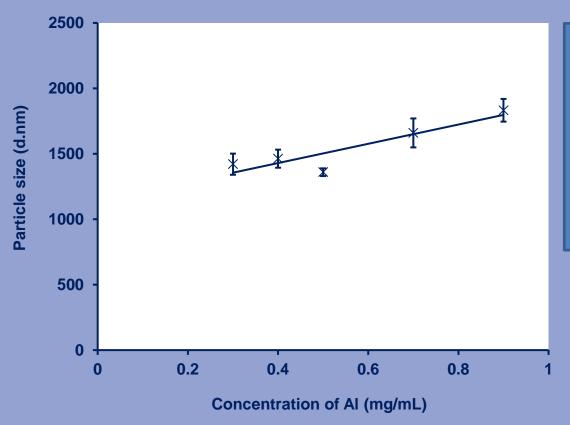


Fig 8: Particle size (d50) of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al following 1hr incubation within R10 medium (37°C). Error bars represent the ±SD of the measurement where n=5

- ▶ D50 values increased in a weakly linear manner over the concentration range studied (2638 -7237nm, R² = 0.822).
- Significant difference in particle size between:
 - ❖ 0.3 & 0.9 mg/mL (1421 nm vs. 1833 nm, P<0.0001).
 - ❖ 0.5 & 0.7 mg/mL (1360 nm vs. 1660 nm, P<0.0001).</p>

ELS – Zeta potential vs. concentration of Al in simulated vaccines.

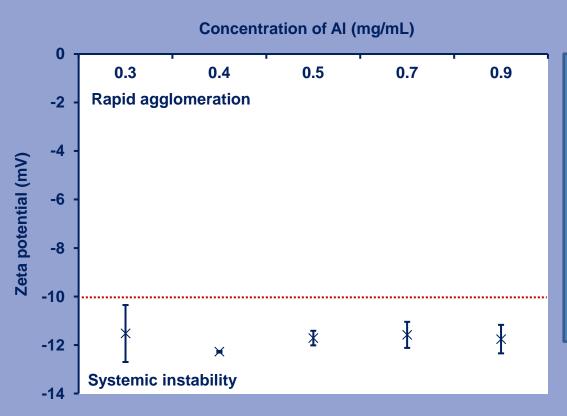
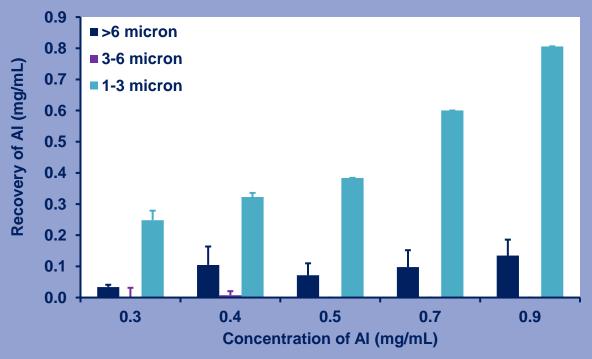
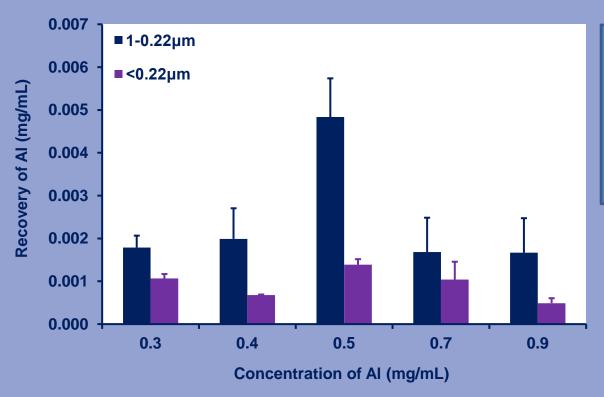



Fig 9: Zeta potential of Alhydrogel only vaccines containing 0.3-0.9mg/mL Al following 1hr incubation within R10 medium (37°C). Error bars represent the ±SD of the measurement where n=5

- Zeta potential values remained fairly consistent over the concentration range studied and were located in the region associated with systemic instability (-11.52- -12.28mV).
- No significant difference between concentrations of AI
- Vaccine particles are negatively charged when administered into R10 medium.
- Evidence of protein adsorption (surface saturation) at all concentrations studied.

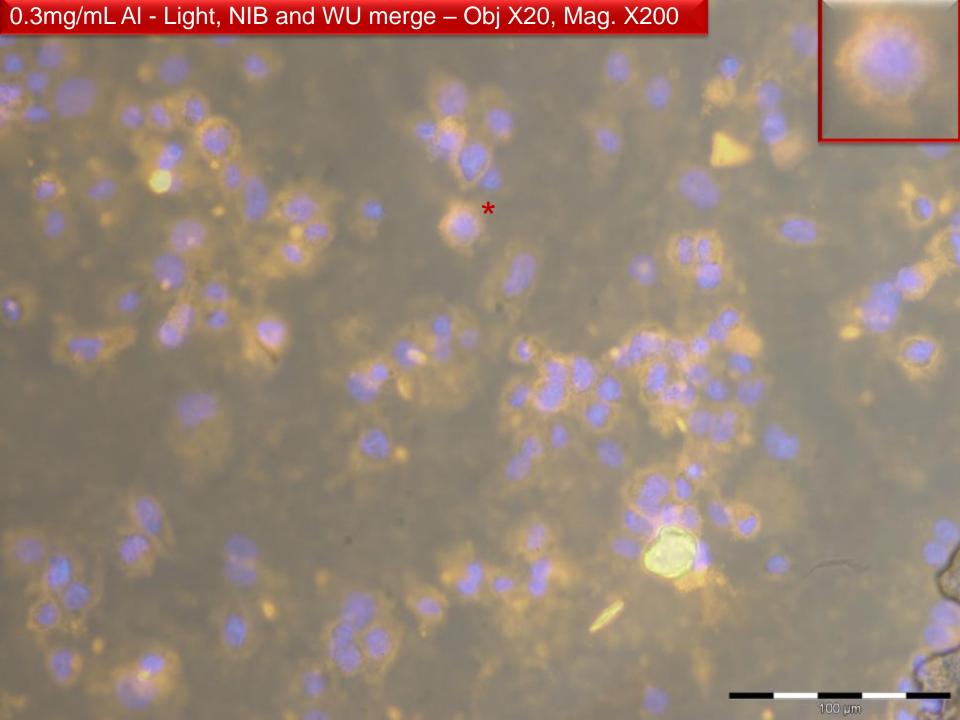
GFAAS/filtration – % aluminium recovery of simulated vaccines in R10 medium (1hr incubation)

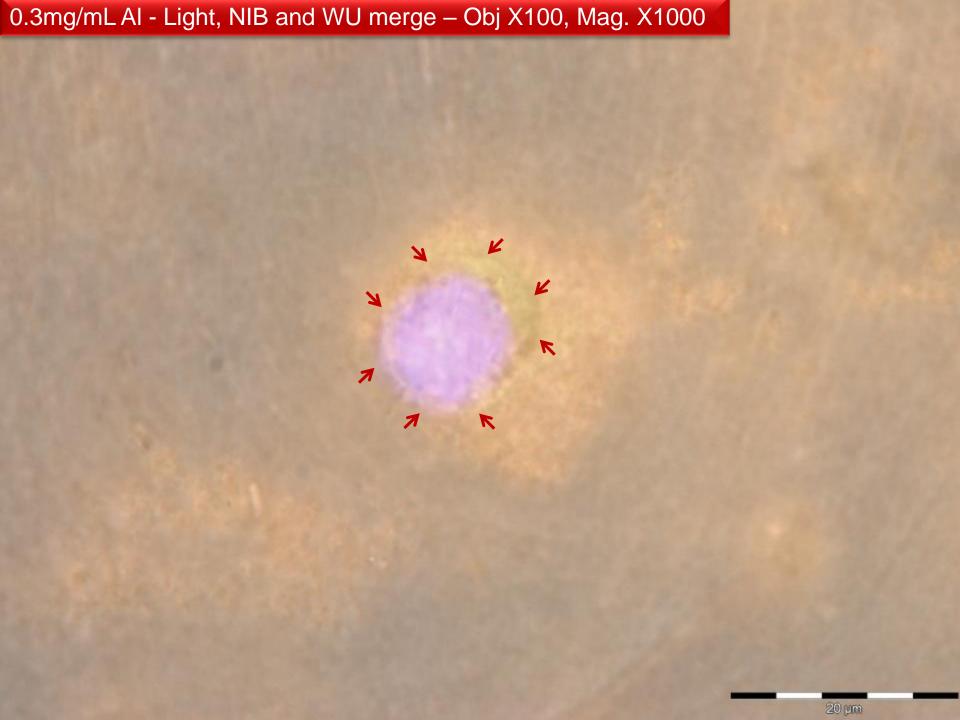


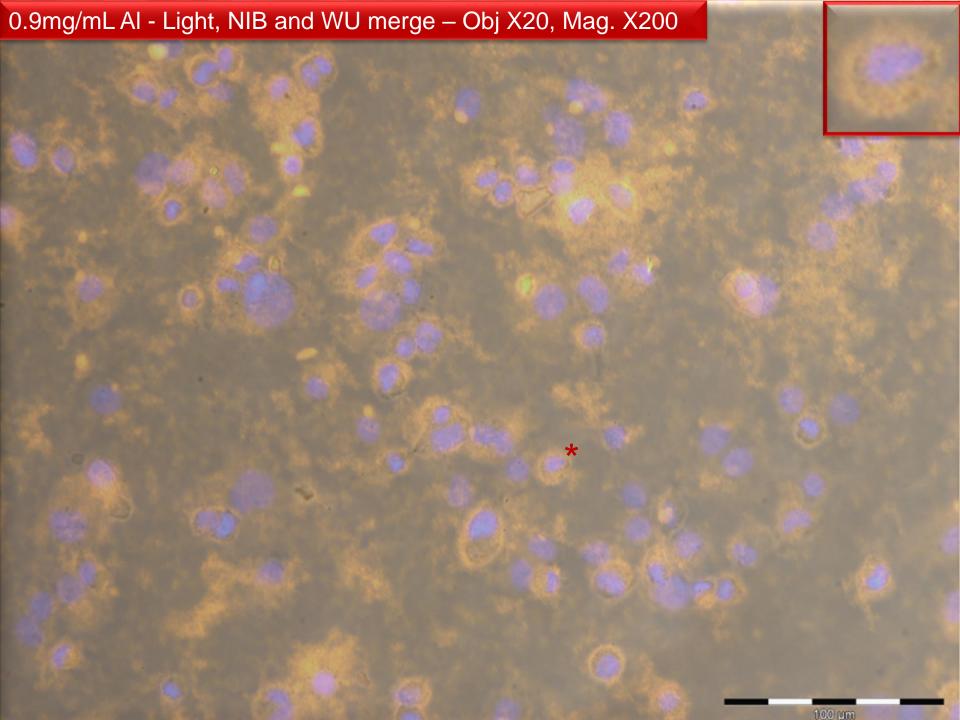
Concentration of AI (mg/mL)	0.3	0.4	0.5	0.7	0.9	
	Recovery of AI (%)					
1-3µm	87.43	73.56	83.46	85.99	85.69	
3-6µm	0.18	1.69	0	0	0	
>6µm	11.78	23.80	15.48	14.01	14.31	

- Abundance of particles between 1-3µm increased when concentration of Al increased.
- Significant differences observed between:
 - 0.3mg/mL & 0.7mg/mL(0.25mg/mL vs. 0.6 mg/mL, P=0.01)
 - 0.3mg/mL & 0.9mg/mL(0.25mg/mL vs. 0.8 mg/mL,P=0.0001)
 - ❖ 0.4 mg/mL & 0.9 mg/mL (0.32 mg/mL vs. 0.8mg/mL, P=0.01
- Larger availability of smaller particles at higher concentrations of Al

Fig 10: The relative abundance of aluminium (%) within specific particle size fractions for Alhydrogel only vaccines containing an initial concentration of 0.3-0.9mg/mL Al following 1 hr incubation within R10 medium (37°C). Blue, purple and green boxes represent the % Al in the size fractions >6µm, 3-6µm & 1-3µm respectively.

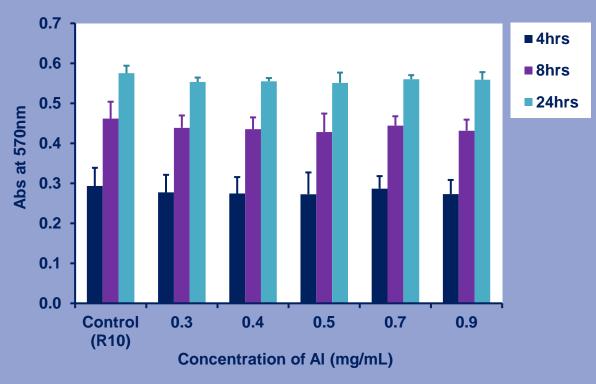

GFAAS/filtration – % aluminium recovery of simulated vaccines in R10 medium (1hr incubation)




- Abundance of particles <0.22 μm remained consistent when concentration of Al increased.
- Significant differences observed between:
 - ❖ 0.5mg/mL & 0.9mg/mL (0.001 mg/mL vs. 0.0002 mg/mL, P=0.004)

Concentration of AI (mg/mL)	0.3	0.4	0.5	0.7	0.9	
	Recovery of AI (%)					
1-0.22μm	0.630	0.454	1.051	0.241	0.177	
<0.22µm	0.375	0.154	0.302	0.149	0.052	

Fig 11: The relative abundance of aluminium (%) within specific particle size fractions for Alhydrogel only vaccines containing an initial concentration of 0.3-0.9mg/mL Al following 1 hr incubation within R10 medium (37°C). Blue & purple boxes represent the % Al in the size fractions 1-0.22µm & >0.22µm respectively.



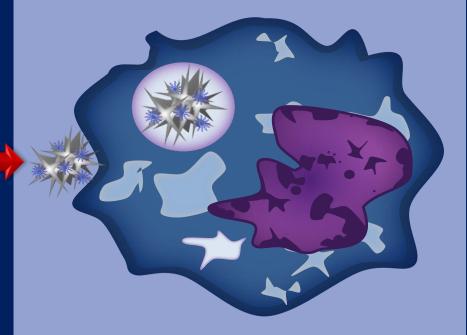
Presto blue- Viability of macrophages exposed to various concentrations of AI in simulated vaccines.

- Null significance between treatment values and control at all time points.
- Cell viability was unaffected by all exposure regimes post 24hrs.

Concentration of Al (mg/mL)	0.3	0.4	0.5	0.7	0.9
Time	% Control				
4hrs	94.6	93.6	93.0	97.8	93.2
8hrs	95.0	94.3	92.8	96.2	93.5
24hrs	96.2	96.5	95.8	97.4	97.2

Fig 12: The viability of macrophages exposed to various concentrations of AI over a total duration of 24hrs. Error bars represent the ±SD of the measurement where n=5.

Conclusions



Uptake

> Uptake observed at low and high concentrations AI.

Cell viability

- ➤ Post uptake macrophage survival was not impaired following 24hrs incubation.
- > Translocation to lymph nodes highly likely at all concentrations studied.

Particle size in R10 (1-3µm)

- > 0.3mg/mL 87%
- > 0.9mg/mL 85%

References

- [1] Baylor NW, Egan W, Richman P. Aluminium salts in vaccines US perspective. *Vaccine*, 2002, 29:S18-23.
- [2] Majgaard Jensen O, Koch C. On the effect of Al(OH)3 as an immunological adjuvant. APMIS,1988, 96(3):257-64.
- [3] Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminium and calcium compounds. In: Powell, M.F. Newman, M.J. (eds.) Vaccine Design: The Subunit and Adjuvant Approach. 1995 . New York, US: Plenum.

Acknowledgements

Funding

Children's medical safety research institute (CMSRI)

Scientific Colleagues

- **Professor Christopher Exley**
- Dr. Matthew Mold
- Isabel Rodriguez
- Dr. David Mazzochi-Jones
- Dr. Sarah Berry

